Long-Term Performance of Failed Flexible Pavements Stabilized with Cement

Gregory E. Halsted, P.E.
Market Manager, Pavements
Portland Cement Association

July 21, 2009
Annapolis, Maryland
Since its founding in 1916, the Portland Cement Association has had the same mission: "Improve and expand the uses of portland cement and concrete."

Divisions

- Market Promotion
- Research
- Technical Services
- Codes and Standards

Affiliates

- Regional Cement and Concrete Promotion Partners
- American Concrete Pavement Association
- The CTL Group
- Cement Association of Canada
Cement-Based Pavement Materials

- Roller-Compacted Concrete
- Pervious Concrete
- Conventional Concrete
- Soil-Cement
- Cement-Modified Soil
- Full-Depth Reclamation
- Cement-Treated Base
- Flowable Fill

Water Content

<table>
<thead>
<tr>
<th>Cement Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled</td>
</tr>
<tr>
<td>Cast</td>
</tr>
</tbody>
</table>
Definition of Full-Depth Reclamation (FDR)

“...technique in which the full flexible pavement section and a predetermined portion of the underlying materials are uniformly crushed, pulverized, or blended, resulting in a stabilized base course; further stabilization may be obtained through the use of available additives.”

- Asphalt Recycling and Reclaiming Association
FDR is most appropriate under the following conditions:

- The pavement is seriously damaged and cannot be rehabilitated with simple resurfacing.
- The existing pavement distress indicates that the problem likely exists in the base or subgrade.
- The existing pavement distress requires full-depth patching over more than 15 to 20 percent of the surface area.
- The pavement structure is inadequate for the current or future traffic.
Advantages of the FDR Process

- Use of in-place materials
- Little or no material hauled off and dumped
- Maintains or improves existing grade
- Conserves virgin material
- Saves cost by using in-place “investment”
- Saves energy by reducing mining and hauls
- Very sustainable process
Engineering Benefits

- Increased Rigidity
 Spreads Loads
- Eliminates Rutting
 Below Surface
- Reduced Moisture
 Susceptibility
- Reduced Fatigue
 Cracking
- Thinner Pavement
 Section
FDR Construction Process

Pulverize, Shape, Add Cement, Mix In Place, Compact, and Surface

<table>
<thead>
<tr>
<th>Bituminous Surfacing</th>
<th>Pulverized</th>
<th>Pulverized</th>
<th>Stabilized</th>
<th>Stabilized</th>
<th>New Surfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular Base</td>
<td>Subgrade</td>
<td>Subgrade</td>
<td>Subgrade</td>
<td>Subgrade</td>
<td>Subgrade</td>
</tr>
<tr>
<td>Existing road</td>
<td>Pulverization to desired depth</td>
<td>Removal of excess material (if necessary) and shaping</td>
<td>Addition of cement, mixing, reshaping, and compacting</td>
<td>Final surface course applied</td>
<td></td>
</tr>
</tbody>
</table>
Pulverization
Cement Spreading
Blending Materials and Moisture
Compaction and Grading
Curing
Surfacing
But What About Performance?
Long Term Performance of Full-Depth Reclamation Pavements

Principal Investigator and Author:

Imran M. A. Syed, PhD, P.E. Thomas L. Brown Associates, PC
Outline

1. Background
2. Purpose
3. Work Plan
4. Observations
5. Conclusions

Report Published
October 2007
1 - Background

• Waste is the enemy of progress!
• Progressive public officials seek to reduce:
 - Time
 - Materials
 - Money
• Salvation of flexible roads typically include:
 - Thick structural overlay
 - Removal and replacement
• Worn out asphalt pavements (lost resiliency) pulverized and stabilized with small amounts of portland cement to create a new roadway base
• Alternative terms often lead to confusion
2 - Purpose

• Document long-term performance
• Summarize agency experience in FDR
 - laboratory design protocol
 - field construction techniques
 - problems encountered
 - innovative approaches
 - lessons learned
• Share results with others!
3 - Work Plan

- Literature review
- Candidate project selection through close coordination with the Portland Cement Association (PCA)
 - State Departments of Transportation
 - County agencies
 - City agencies
 - Private developers
- Interaction with select officials
- Visual Pavement Condition Survey (PCI)
- Extract cores for UCS measurements
- Summarize findings in a Report
FDR Performance Evaluation
<table>
<thead>
<tr>
<th>Agency</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Cities of Westminster, Fullerton, Los Alamitos, and Buena Park, California</td>
</tr>
<tr>
<td></td>
<td>Village of Endicott, New York</td>
</tr>
<tr>
<td></td>
<td>City of Stephenville, Texas</td>
</tr>
<tr>
<td>County</td>
<td>Clark, Pierce, Spokane, and Stevens Counties, Washington</td>
</tr>
<tr>
<td></td>
<td>Geauga County, Ohio</td>
</tr>
<tr>
<td></td>
<td>Montgomery County, New York</td>
</tr>
<tr>
<td></td>
<td>Bonner County, Idaho</td>
</tr>
<tr>
<td></td>
<td>Washington County, Maryland</td>
</tr>
<tr>
<td>State</td>
<td>Idaho Transportation Department - District 6</td>
</tr>
<tr>
<td></td>
<td>South Carolina Department of Transportation</td>
</tr>
<tr>
<td></td>
<td>Texas Department of Transportation - Bryan and Fort Worth Districts</td>
</tr>
<tr>
<td>Private</td>
<td>Anne Arundel, Harford, and Prince Georges Counties, Maryland</td>
</tr>
</tbody>
</table>
The PCI is a subjective numerical rating of pavement condition, ranging from 0 (for the worst possible condition) to 100 (for the best possible condition).

Dozens of core samples were obtained from the project study areas for unconfined compressive strength (UCS) determination.

<table>
<thead>
<tr>
<th>PCI Value</th>
<th>Pavement Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Failed</td>
</tr>
<tr>
<td>10-25</td>
<td>Very Poor</td>
</tr>
<tr>
<td>25-40</td>
<td>Poor</td>
</tr>
<tr>
<td>40-55</td>
<td>Fair</td>
</tr>
<tr>
<td>55-70</td>
<td>Good</td>
</tr>
<tr>
<td>70-85</td>
<td>Very Good</td>
</tr>
<tr>
<td>85-100</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
4 - Observations

- Over 150 roadways evaluated (79 in-depth)
- Overall - excellent long-term performance
- Average PCI of all study pavements was 89
- UCS of cores were from 260 to over 1000 psi
- Cement contents ranged from 2 to 12 percent
- Average cement content was 5 percent
- Owners are happy with the performance of FDR and plan to do more work in the future
- No major failures were observed that could be attributed to the cement-stabilized base
79 Projects Evaluated In-Depth

average project age of roadways was 9 years
Montgomery County, New York

- Began reclaiming roadways in the late 1980’s
- Started using FDR with cement exclusively in 2000
- PCI values average above 84
- Conducts freeze-thaw tests during FDR design process
- 10-inch base thickness
- Uses 4 to 6 percent portland cement
- Often incorporates widening along with FDR projects
Texas DOT - Bryan District

- On rural farm to market (FM) system
- FDR since 1996
- PCI values generally above 85
- Cement content 3 to 4 percent
- Typical 10-inch recycled layer with two-course chip seal
- TTI evaluated 25 projects
 - Stiff but not brittle base
 - Minimal shrinkage cracking
 - Improved waterproofing
- TxDOT Pavement Design program indicated that an overlay is needed after nine years. So far the roads are doing well and no overlay!
Westminster, California

- Began FDR in 1989
- Thickness between 9 and 12 inches
- PCI’s mostly above 85
- Utility cuts causing distress
- Slurry seal every 7 years
- Open to traffic during construction operations
- Typically 6 percent cement
- 2.75-inch asphalt surface
- Geotextile used in surface layer to reduce reflective cracking
- State provides credit for recycling
- 50 percent cost savings
Idaho Transportation Department – District 6

- Began CRABS in early 1990’s
- Thickness between 6 and 9 inches
- PCI’s above 85
- Environmental extremes!
 - -40° to over 100° F
 - 8 to 30 inches rain
- Open to traffic during construction operations
- Typically 2 percent cement
- ITD does not allow the incorporation of subgrade soils in FDR work
Spokane County, Washington

- Started FDR program in late 1990’s
- PCI values either 99 or 100
- 8 to 10 inches thick
- 3 to 5 percent cement
- Spring load restrictions reduced through FDR
- Strength reduced from over 600 psi to less than 400 psi (per PCA)
- Joint venture with local contractors
 - County does initial prep, compaction, and finishing
 - Contractor performs pulverizing and mixing work
- 30 to 50 percent cost savings
5 - Conclusions

• FDR is a successful technique providing highway officials a cost-effective tool to maintain the highway network

• High cement contents can lead to very stiff bases causing shrinkage cracks in the pavement surface

• The current trend is to lower cement contents and target seven-day UCS to between 200 and 400 psi

• Many agencies avoid cutting in to the subgrade
Conclusions

“Portland Cement is probably the closest thing we have to a universal stabilizer.”

Chemical Stabilization Technology for Cold Weather
United States Army Corps of Engineers, September 2002

- Since portland cement stabilizes many materials, it is considered as a “universal stabilizer” by most - expectations are high
- Agencies like to use portland cement to “dry” soils
- More water is used during construction and not enough during curing - leads to shrinkage problems
- Use of standard Proctor vs. modified Proctor
Full Report
60 pages
PCA SR016

Summary
4 pages
PCA IS689
for additional information, please visit the PCA website at

www.cement.org/pavements