Precast Concrete for State-of-the-Art Pavement Infrastructure Maintenance

July 20, 2015

Kirsten Stahl, P.E.
District Materials Engineer
Caltrans – District 7
Concrete Pavement Infrastructure Maintenance

- Challenges
- Distresses & Traditional Strategies
- Alternative Strategies & Benefits
- Precast Concrete Slabs
- Installation & Innovations
- Summary
- Questions
Challenges

• Aging Infrastructure
 – > 40 years in service

• Heavy Traffic
 – > 50 million ADT, > 10% trucks

• Worker Exposure

• Short & Limited Traffic Closure Periods
 – Daytime peaks from 6 AM – 10 AM, 3 PM – 7 PM allow moving closures off-peak
 – Night time closures from 10 PM – 5 AM
Challenges

• **Limited Budgets & Increasing Costs**
 – Operating costs of equipment, fuel
 – Materials on hand, purchase orders
 – Personnel hours, overtime

• **Durable, Temporary & Emergency Repairs**
 – How long should it last?
 – Days, Months or Years?

• **Willingness to Innovate**
Distresses & Traditional Strategies

• Step-Faulting
 – Grinding, Dowel Bar Retrofit

• Spalling
 – Patching - cold mix, hot mix, cement grouts, polymer resins

• Base Erosion
 – Subsealing – cement grout, urethane foam
FIGURE 1 Existing failing pavement condition on Route 210 near Montrose, CA
Distresses & Traditional Strategies

• **Cracking**
 – Crack sealing – bituminous, silicone, methacrylate, epoxy
 – Slab Replacement – hot mix, concrete mix

• **Most** distresses lead to eventual slab replacement
• **Not all** repair strategies are effective\(^1\)
Alternative Strategies & Benefits

• Looking for longer lasting alternatives
 – High Early Strength Concretes
 – Precast Concrete2
• Work completed in shorter windows
• Open to traffic sooner
• Fewer repairs reduces worker exposure
• Cost of durable repairs
 – Potential higher initial cost
 – Potential lower long term / life-cycle costs
Example: Cost of durable repairs

- **Traditional Portland Cement Slab replacement**
 - Cost $2500 per slab
 - Open to traffic in 10 days
 - Lasts 10+ years, can be reused for aggregate

- **Portland Cement Slab Replacement (accelerated mix)**
 - Cost $2500 per slab
 - Open to Traffic in > 4 to 10 hours
 - Lasts 2 to 5 years, can be reused for aggregate
Example: Cost of durable repairs

- **Sulfo-Aluminate (Belite) Cement Slab Replacement**
 - Cost $2500 - $3500 per slab
 - Open to Traffic in > 1 to 4 hours
 - Lasts > 15+ years, can be reused for aggregate

- **Precast Concrete Slab Replacement**
 - Cost $2500 - $3500 per slab
 - Open to Traffic in >1 to 3 hours
 - Lasts 20 – 40+ years, can be salvaged & reused as a precast panel elsewhere

13 – Figure 2
Durable vs. Temporary & Emergency Repairs

• **Durable repairs**
 – Last longer
 – Need fewer repairs over time
 – Cost less over time
 – Reduce worker exposure over time

• **Temporary Repairs**
 – Need to open quickly
 – Need to last until they can be replaced
 – Uncertain durability may require repeated repairs
 – Increase in worker exposure due to repeated repairs
 – Uncertain costs due to repeated repairs
Durable vs. Temporary & Emergency Repairs

- Emergency Repairs
 - Usually during adverse weather & traffic
 - Must open quickly
 - Similar to temporary repairs
 - Need to last until they can be replaced
 - Uncertain durability may require repeated repairs
 - Increase in worker exposure due to repeated repairs
 - Uncertain costs due to repeated repairs

What if...
- Could it be possible to get durability too?
Precast Concrete Pavement

• **Durable**\(^2, 3, 4, 5\)
 – Fabricated in controlled plant
 – HVS testing of >150 million ESALS with no distress, 240 million ESALS to failure\(^4, 5\)

• **Open to Traffic Quickly**
 – 300 lane-feet in 3 hours, near Lake Hughes Road, I-5
 – 375 lane-feet in 3 hours, near Peck Road, I-10

• **Adverse weather installation**
 – Near Lincoln Ave, Altadena, I-210 – light drizzle
 – Near Lake Hughes Road, Castaic, I-5 – 34\(^\circ\) (near freezing) temperature
Precast Concrete Slabs

• **Used in many applications**
 – Individual pavement slabs, I-101, I-210, etc.
 – Pavement lanes, I-5, I-10, I-101, I-210, etc.
 – Bus pads, LA-2, Santa Monica Bl., Hollywood, CA
 – Intersections
 – Curved alignments, I-101 @ LA-170 IC connector

• **Installation**
 – Contractor purchase order
 – Maintenance forces
 – Competative bid contracts, etc.
Precast Concrete Slabs

• Reduced thickness
 – Reinforcing &/or pre-stress for in-kind thickness & handling stresses

• Reusable
 – Panels from I-15 in District 8 were salvaged and reused on another project.
 – Can be stockpiled for emergency and temporary use
 – Panels on I-210 near Monrovia used as temporary roadway during construction.
Pavement Depth vs. Traffic Loading, in ESALS*

<table>
<thead>
<tr>
<th>PAVEMENT THICKNESS</th>
<th>EQUIVALENT SINGLE AXLE LOAD (California Coastal Climate)</th>
<th>EQUIVALENT SINGLE AXLE LOAD (California Inland Valley Climate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8” (20 cm)</td>
<td>< 800,000 ESALS</td>
<td>-</td>
</tr>
<tr>
<td>9” (22.5 cm)</td>
<td>3,020,000 ESALS</td>
<td>< 800,000 ESALS</td>
</tr>
<tr>
<td>10” (25 cm)</td>
<td>13,500,000 ESALS</td>
<td>6,600,000 ESALS</td>
</tr>
<tr>
<td>12” (30 cm)</td>
<td>84,700,000 ESALS</td>
<td>26,100,000 ESALS</td>
</tr>
<tr>
<td>14” (35 cm)</td>
<td>238,000,000 ESALS</td>
<td>84,700,000 ESALS</td>
</tr>
<tr>
<td>16” (40 cm)</td>
<td>-</td>
<td>238,000,000 ESALS</td>
</tr>
</tbody>
</table>

* TABLE 1 Capability of Existing Pavement Depth to Support Traffic Loading, in ESALS*
FIGURE 2 Salvaged precast pavement on Route 15, San Bernardino, CA.
Installation Details

• **Identify damaged panels**
 – Measure for typical size, depth, geometry
 – Submit requirements to contractor or fabricator

• **Demolition**
 – Sawcut pavement to fit panel
 – Recommend non-impact removal to reduce base preparation, save time & materials

• **Base preparation**
 – Recommend treated base to prevent base erosion
FIGURE 3 Base preparation of precast pavement installation on Route 210 near Montrose, CA.
FIGURE 4 Constructing rapid setting lean concrete base on Route 680 in Dublin, CA.
FIGURE 5 Saturated sub-grade condition under precast pavement.
Installation Details

• **Panel Preparation**
 - Apply joint filler to sides of panel
 - Insert dowels
 - Apply bond breaker to panel soffit or base surface
 - Spray applied or geotextile
 - Apply grout containment measures
 - Caulk, foam filler, plastic sheeting, etc.
 - Attach / place leveling system
 - Shims, tracks, leveling bolts, leveling beams, etc.
Installation Details

• **Panel Placement**
 – Guide panel into excavation
 – Avoid spalling due to poor handling (bumping & using crowbars)
 – Verify panel is level with adjacent pavement
 • or complies with planned profile
 – Pump in underslab grout to fill any voids
 • Use grout holes to verify grout has filled voids
 – Fill access pockets and dowel slots with approved filler material
 – Remove surface hardware before opening to traffic
FIGURE 6 Installation of precast pavement on Route 210 near Montrose, CA
Panel Innovations

• Repeatability
 – Leads to improvements & optimization

• Leveling Devices
 – Shims, leveling bolts & hardware
 • Sacrificial
 • Underslab grout must set before opening to traffic
 – Leveling beams & brackets
 • Reusable
 • Underslab grout must set before removing and opening to traffic
 – Accurate base preparation
 • May not require leveling hardware
 • May not need underslab grout
FIGURE 7 Precast pavement and hot-mix-asphalt taper used for temporary pavement on a truck lane near Sylmar, CA.
Panel Innovations

• Load Transfer Devices
 – Smooth round pavement dowels
 • Surface slots, downward slots, embedded sleeves
 • Dowel Grout
 – Keyed Joints
 • Key & keyway with epoxy bond
 • Double key - grouted

• Curved Panels
 – Trapezoidal or wedge shapes
 – Folded PCI or Warped Panels

13 – Figure 9
Fort Miller
FIGURE 8 Panels installed with proprietary leveling and load transfer devices at Route 10 Banning truck scales, Riverside, CA.
FIGURE 9 Precast pavement installed on a curve on Route 101 near Studio City, CA.
Panel Innovations

• **Durability Testing**
 – **Heavy Vehicle Simulator** \(^4, 5\)
 • Accelerated testing to 150 million ESALS with no panel distress
 • Granular base pumped out
 • Accelerated testing with extra heavy load to 240 million ESALS failed by crushing
 – **Falling Weight Deflectometer**
 • Measures load transfer efficiency
 • Multiple “drops” can demonstrate accelerated loading.
FIGURE 10 Falling weight deflectometer testing (FWD) of a proprietary load transfer device at Route 10 Banning truck scales, Riverside, CA.
Summary

• Concrete pavement infrastructure maintenance crews face many challenges
 – Aging infrastructure
 – Heavy traffic demands quick repairs due to limited closure periods
 – Worker exposure increases with repeated failures
 – Need for durable repairs due to limited budgets & increasing costs
 – Limited repair strategies beg for innovative solutions
Summary

- Precast Concrete pavement offers many solutions to the challenges
 - Durability 2, 3, 4, 5 reduces worker exposure and cost of repeated repairs
 - Opens to traffic quickly, even in adverse weather conditions
 - Reduced thickness reduces time and cost of repairs
 - Many applications, including emergency & temporary repairs
 - Reusability reduces costs, improves sustainability
 - An innovative tool for State-of-the-Art Pavement Infrastructure Maintenance
FIGURE 11 Precast pavement to replacements ready to open to the morning commuter, on Route 10, in Los Angeles, CA.
Questions?
List of Figures

FIGURE 1 Existing failing pavement condition on Route 210 near Montrose, CA.

FIGURE 2 Salvaged precast pavement on Route 15, San Bernardino, CA.

FIGURE 3 Base preparation of precast pavement installation on Route 210 near Montrose, CA.

FIGURE 4 Constructing rapid setting lean concrete base on Route 680 in Dublin, CA.

FIGURE 5 Saturated sub-grade condition under precast pavement.
List of Figures

FIGURE 6 Installation of precast pavement on Route 210 near Montrose, CA.

FIGURE 7 Precast pavement and hot-mix-asphalt taper used for temporary pavement on a truck lane near Sylmar, CA.

FIGURE 8 Panels installed with proprietary leveling and load transfer devices, on Route 10 Banning truck scales, Riverside, CA.

FIGURE 9 Precast pavement installed on a curve on Route 101 near Studio City, CA.

FIGURE 10 Falling Weight Deflectometer (FWD) testing of a proprietary load transfer device, on Route 10 Banning truck scales, Riverside, CA.

FIGURE 11 Precast pavement to replacements ready to open to the morning commuter, on Route 10, in Los Angeles, CA.
References

References

References

References

15. Perez, V. CTS Cement. Photograph. Date unknown.

Authors

Kirsten Stahl, P.E., District 7 Materials Engineer
California Department of Transportation, Division of Design
100 S. Main St, Suite 100, Los Angeles, CA 90012;
213-897-0470
FAX 213-897-2776
e-mail: kirsten.stahl@dot.ca.gov (Corresponding Author)

Deborah Wong, P.E., Deputy District 7 Director
California Department of Transportation, Division of Maintenance
100 S. Main St, Suite 100, Los Angeles, CA 90012
213-897-8150
FAX 213-897-9583
e-mail: debbie.wong@dot.ca.gov
Authors

Edward G. Toledo, Maintenance Superintendent (Retired)
California Department of Transportation, Division of Maintenance
Address not available
Phone No. not available
Fax No. not available
e-mail: edwardgtoledo@gmail.com