Optimizing Use of Highway M&R Funds by Integrating RWD Data into PMS Decision Making

Curt A. Beckemeyer, P.E.

Douglas A. Steele, P.E.

Presentation Outline

Background
Study Objectives and Purpose
Data Collection
Pavement Management Analysis
Findings
Conclusions
Acknowledgements
Background

Traditional pavement performance monitoring

• Indices based on surface distress & ride quality

Pavement structural response

• Important indicator of performance

Rolling Wheel Deflectometer (RWD)

• Innovative device that efficiently measures structural response
Study Purpose

Evaluate the potential benefits of integrating RWD data into agency PMS

Compare PM analyses and results performed with and without RWD data

- Treatment selection
- Costs
- Performance
Data Collection
The RWD

System
• Laser-based system
• 18-kip, single-axle, dual-tire

Operation
• Operates at posted speeds
• No lane closures

Measurements
• Spatially-coincident method
• Averages deflections over 0.1-mile intervals
Test Roads

Test Network

- 1,000 miles (ODOT D-5)
- Primarily flexible pavements
- Wide range of functional classifications and traffic

Data Collection

- Continuous data collection
- Averaged data at 0.1-mile intervals
- Testing duration: 4.5 days
Agency PMS Data

Composition / Use

- Pavement age
- Layer types and thicknesses
- Classification, traffic (ADT)

Condition

- Pavement Quality Index (PQI):
 - Ride quality
 - Rutting
 - Distress
- Structural condition
 - FWD data (interstate only)
 - Structural rating (subjective)
Agency PMS Methodology

Software

• Deighton software (dTIMS)

Performance Modeling

• Defined sectioning
• Performance models for each pavement type

Decision Models

• 3 Treatment categories
 ➢ Preservation, rehabilitation, and replacement
• Decision trees
 ➢ PQI, traffic, and structural condition
Pavement Management Analysis
Approach

Evaluate multiple M&R treatment strategies

• Base strategy: PQI only
• Two modified strategies: add RWD data

Compare results

• Costs
• Performance (in terms of PQI)
PQI Only – Treatment Matrix

Preservation

Rehabilitation

Replacement

PQI

Low Traffic

Medium Traffic

High Traffic

88

75

55

80

65
RWD #1 – Treatment Matrix

RWD →

Preservation

Rehabilitation

Replacement

PQI

Low Traffic
Good Fair Poor

Medium Traffic
Good Fair Poor

High Traffic
Good Fair Poor

88
75
55
0

80
65

RWD #2 – Treatment Matrix

- Preservation
- Rehabilitation
- Replacement
Budget Scenarios

Target PQI Analysis

• Target network PQI = 92
• Compare costs of strategies

Unconstrained Funding Analysis

• Unlimited funds
• Select all triggered treatments
• Compare PQI performance and/or costs
Findings
Results

<table>
<thead>
<tr>
<th>Budget Scenario</th>
<th>Percent change in cost (relative to “PQI Only” base case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PQI Only</td>
</tr>
<tr>
<td>Target PQI = 92</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Budget Scenario</th>
<th>Percent change in cost (relative to “PQI Only” base case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PQI Only</td>
</tr>
<tr>
<td>Target PQI = 92</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Unconstrained</td>
<td>0.0 %</td>
</tr>
<tr>
<td>PQI = 95</td>
<td>PQI = 96</td>
</tr>
</tbody>
</table>
Conclusions

RWD allows broader, more reliable use of pavement preservation

- Identifies candidate roads in GOOD and FAIR structural conditions
- Prevent use on roads in POOR structural condition

Cost savings can be significant

- More than 10 percent, in certain cases
- Depends on agency’s base case scenario and current road conditions
Acknowledgements

FHWA Office of Asset Management (sponsor)

• Specifically, the efforts of Mr. Stephen Gaj and Mr. Thomas Van

Oklahoma DOT (supporting agency)

• Specifically, the efforts of Mr. William Dickinson and Ms. Ginger McGovern
Thank You

Curt Beckemeyer • cbeckemeyer@ara.com • (217) 356-4500
Thank You!

Questions or Comments?