Measuring the Impact of Training on the Use of Chlorides in Winter Maintenance

Wilfrid A. Nixon1, Tim Peters2, Anissa Gerard3

1: Salt Institute
2: Illinois DOT
3: University of Iowa
• How do we know when we have made a difference?
• How do we normalize for the variability of a winter season or a winter storm?
• Results from an Illinois DOT district
• Implications of the results
• New training developed for Illinois DOT supervisors and front line maintenance workers
• Addressing issues of chloride usage – how do we make sure we use the correct amount, no more and no less?
• If the training works, we should see a reduction in the use of salt when comparing pre-training usage with post-training usage
• Except, every storm is different and every winter is different
• Need a method to take the storm and the winter variation out of the mix so we can just look at the benefit (or otherwise) of the change we have made (in this case, the new training)

• Traditionally this is done by use of an index to measure winter severity
• A number of these indices are available, but not all have the same goals.
• In this case, the goal is to measure how difficult a given storm was from the viewpoint of achieving the level of service goals for winter maintenance activities.
• So two things were required:
 • How severe was a given storm?
 • How can we roll up all the storms in a winter to determine how severe a given winter was?
• Different folks will have different ideas!
• But, might be a few themes upon which most can agree…
 • Pavement temperature (colder is harder)
 • Storm type (heavy snow and freezing rain are the two worst types)
 • Wind speed (above about 15 mph drifting becomes a major problem)
 • Pre-storm events can influence (e.g. does it start with rain or snow?)
 • Post-storm, increasing wind speeds and decreasing pavement temperatures are bad news

What Factors Make a Storm Bad?
Dealing With Storm Severity

\[
SSI = \left[\frac{1}{b} \right]^{0.5} \left[(ST \times Ti \times Wi) + Bi + Tp + Wp - a \right]
\]

<table>
<thead>
<tr>
<th>Storm Type (ST)</th>
<th>Freezing rain</th>
<th>Light Snow</th>
<th>Medium Snow</th>
<th>Heavy Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.72</td>
<td>0.35</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>Storm Temp. (Ti)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm (33F+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid(25-32F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold (15-25 F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Conditions in Storm (Wi)</td>
<td>Light (<15 mph)</td>
<td>Strong (> 15 mph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Storm Behavior (Bi)</td>
<td>Starts as Snow</td>
<td>Starts as Rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Storm Temp. (Tp)</td>
<td>Same</td>
<td>Warming</td>
<td>Cooling</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-0.087</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Storm Wind Conditions Wp)</td>
<td>Light</td>
<td>Strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tons of Rock Salt Used

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Winter Season</th>
<th>Tons of Rock Salt Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2009-10</td>
<td>536,900</td>
</tr>
<tr>
<td>11</td>
<td>2010-11</td>
<td>562,400</td>
</tr>
<tr>
<td>12</td>
<td>2011-12</td>
<td>235,200</td>
</tr>
<tr>
<td>13</td>
<td>2012-13</td>
<td>456,500</td>
</tr>
<tr>
<td>14</td>
<td>2013-14</td>
<td>802,341</td>
</tr>
</tbody>
</table>

Note: 2012-13 used a lot less salt than 2013-14

Question: Which year was the salt used more wisely?

Why We Need This

AASHTO SCOM/TRB Maintenance Conference 7/22/2015
• Compare storm to storm
• Add up all the storms in a month, and compare month to month
• Add up all the months in a winter and compare winter to winter
• Look at Moline District of Illinois DOT (because we had the data...)

How to Use the Index
The 2013-14 Winter
The 2012-13 Winter

AASHTO SCOM/TRB Maintenance Conference

7/22/2015
Salt Use 2013-14

AASHTO SCOM/TRB Maintenance Conference

7/22/2015
Salt Use 2012-13

AASHTO SCOM/TRB Maintenance Conference
Moline 2013-14
Total Salt Used = 13,420 Tons
Tons/ Index Point = 499

Moline 2012-13
Total Salt Used = 11,200 Tons
Tons/ Index Point = 848

Both Together
• Salt use in general follows the index – higher index, more salt used – but...
• The maximum amount used in a month was similar between the two winters
• The total amount used each winter was similar (although some 20% higher in the more severe winter)
• The normalized quantity (tons per winter index point) was lower in the more severe winter than in the less severe winter – about 40% lower (or wiser)
• Be cautious – we cannot ascribe all the improvement to training, because the training did not happen between the two winters!

• What did happen?

• Perhaps salt availability limited usage in 2013-14.

• Perhaps in 2012-13 salt was over-applied.

• Given only two years data for one location we cannot say, but we do have a tool that allows us to start to look at these and related questions.

What Does it Mean?
Questions?