Estimating Owning & Operating Costs
Estimating Equipment Costs

1. Equipment Costs
2. Annual Cost Model
3. Cumulative Cost Model
4. NCDOT Models

The take home…
1. Equipment Costs
1. Equipment Costs

Operating Costs

- Rate ($/hr) increases with age due to increasing frequency & magnitude of repairs.
- Also a “fixed” rate component for fuel, PMs, and wear parts.
- Timing and size of repairs are the real unknowns.
2. Annual Cost Model

Owning Costs

- Sum of Years Digits to estimate machine value
- Depreciation term and ultimate value from:
 - Current NCDOT depreciation schedule
 - Construction Equipment Ownership and Operating Expense Schedule by US Corps of Engineers

Class 0201 – Truck, Pickup 5000 GVW

 Term: 5 years
 Salvage Value: 20% of purchase price
2. Annual Cost Model

Operating Costs

• Estimated cost and use in each year of life
• Snapshot of the fleet in a year (2011)

\[y = 0.2462e^{0.0373x} \]
\[R^2 = 0.1228 \]

\[y = -697.07x + 17653 \]
\[R^2 = 0.064 \]
2. Annual Cost Model

Observations

1. Operating cost ($/mi) highly variable
 - Snapshot of a trend longer than 1 year
 - Investment periods – high cost and low use
 - Honeymoon periods – reaping benefits of previous investments

2. Data included all possible variations
 - All makes/models, applications, and operator skills
 - Some older machines no longer produced/purchased
 - May not accurately reflect expected future
3. Cumulative Cost Model

- Track machine age in miles or hours, rather than years
- Tangent point defines economic life (lowest rate)
- Cost growth largely comes from increasing operating costs
3. Cumulative Cost Model

Mitchell Curve

*LTD Repair Cost = A*Age² + B*Age*

- For similar machines – type, size, and application
- Must have LTD cost and use (age) data
- Best to have:
 - Machines of varying ages
 - Some machines at or beyond economic life

\[y = 0.0011x^2 + 0.9613x \]

\[R^2 = 0.9382 \]
4. NCDOT Models

Equipment classes, model years 2003-08:

- 0201 Pickup trucks
- 0205 Dump trucks, 35k GVW
- 0314 Backhoes
- 0900 Motor graders

Cumulative Cost Index – Operating cost as a percentage of purchase price

\[CCI = \frac{\text{LTD Oper Cost [2012$]}}{\text{Purchase Price [2012$]}} \]
4. NCDOT Models

9,200 data points for 1,300 pickups (class 0201)

\[y = -9.61 \times 10^{-12} x^2 + 1.18 \times 10^{-5} x \]

\[R^2 = 0.875 \]
4. NCDOT Models

2003 Model Pickups

Low miles → High A values

Machine Age (mi) vs. Cumulative Cost Index
4. NCDOT Models

Average A value of top quartile machines by age
4. NCDOT Models

\[y = 2.03 \times 10^{-11} x^2 + 8.34 \times 10^{-6} x \]
4. NCDOT Models

Class 0201 Pickup Trucks

Note: Based on 8,600 miles per year; $23,000 purchase price; and 80 percent depreciation over 5 years

<table>
<thead>
<tr>
<th>Year</th>
<th>Age (mi)</th>
<th>Annual Depreciation Charge</th>
<th>End of Year Machine Value</th>
<th>Life to Date Owning Rate ($/mi)</th>
<th>Annual Operating Cost</th>
<th>Life to Date Operating Cost</th>
<th>Life to Date Operating Rate ($/mi)</th>
<th>Life to Date Total Rate ($/mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>$ 23,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8,600</td>
<td>$ 6,133</td>
<td>$ 16,867</td>
<td>$ 0.71</td>
<td>$ 1,679</td>
<td>$ 1,679</td>
<td>$ 0.20</td>
<td>$ 0.91</td>
</tr>
<tr>
<td>2</td>
<td>17,200</td>
<td>$ 4,907</td>
<td>$ 11,960</td>
<td>$ 0.64</td>
<td>$ 1,748</td>
<td>$ 3,427</td>
<td>$ 0.20</td>
<td>$ 0.84</td>
</tr>
<tr>
<td>3</td>
<td>25,800</td>
<td>$ 3,680</td>
<td>$ 8,280</td>
<td>$ 0.67</td>
<td>$ 1,817</td>
<td>$ 5,245</td>
<td>$ 0.20</td>
<td>$ 0.77</td>
</tr>
<tr>
<td>4</td>
<td>34,400</td>
<td>$ 2,453</td>
<td>$ 5,827</td>
<td>$ 0.50</td>
<td>$ 1,887</td>
<td>$ 7,131</td>
<td>$ 0.21</td>
<td>$ 0.71</td>
</tr>
<tr>
<td>5</td>
<td>43,000</td>
<td>$ 1,227</td>
<td>$ 4,600</td>
<td>$ 0.43</td>
<td>$ 1,956</td>
<td>$ 9,087</td>
<td>$ 0.21</td>
<td>$ 0.64</td>
</tr>
<tr>
<td>6</td>
<td>51,600</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.36</td>
<td>$ 2,025</td>
<td>$ 11,113</td>
<td>$ 0.22</td>
<td>$ 0.57</td>
</tr>
<tr>
<td>7</td>
<td>60,200</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.31</td>
<td>$ 2,095</td>
<td>$ 13,207</td>
<td>$ 0.22</td>
<td>$ 0.53</td>
</tr>
<tr>
<td>8</td>
<td>68,800</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.27</td>
<td>$ 2,164</td>
<td>$ 15,371</td>
<td>$ 0.22</td>
<td>$ 0.49</td>
</tr>
<tr>
<td>9</td>
<td>77,400</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.24</td>
<td>$ 2,233</td>
<td>$ 17,605</td>
<td>$ 0.23</td>
<td>$ 0.47</td>
</tr>
<tr>
<td>10</td>
<td>86,000</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.21</td>
<td>$ 2,303</td>
<td>$ 19,907</td>
<td>$ 0.23</td>
<td>$ 0.45</td>
</tr>
<tr>
<td>11</td>
<td>94,600</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.19</td>
<td>$ 2,372</td>
<td>$ 22,279</td>
<td>$ 0.24</td>
<td>$ 0.43</td>
</tr>
<tr>
<td>12</td>
<td>103,200</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.18</td>
<td>$ 2,441</td>
<td>$ 24,720</td>
<td>$ 0.24</td>
<td>$ 0.42</td>
</tr>
<tr>
<td>13</td>
<td>111,800</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.16</td>
<td>$ 2,510</td>
<td>$ 27,231</td>
<td>$ 0.24</td>
<td>$ 0.41</td>
</tr>
<tr>
<td>14</td>
<td>120,400</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.15</td>
<td>$ 2,580</td>
<td>$ 29,810</td>
<td>$ 0.25</td>
<td>$ 0.40</td>
</tr>
<tr>
<td>15</td>
<td>129,000</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.14</td>
<td>$ 2,649</td>
<td>$ 32,459</td>
<td>$ 0.25</td>
<td>$ 0.39</td>
</tr>
<tr>
<td>16</td>
<td>137,600</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.13</td>
<td>$ 2,718</td>
<td>$ 35,178</td>
<td>$ 0.26</td>
<td>$ 0.39</td>
</tr>
<tr>
<td>17</td>
<td>146,200</td>
<td></td>
<td>$ 4,600</td>
<td>$ 0.13</td>
<td>$ 2,788</td>
<td>$ 37,965</td>
<td>$ 0.26</td>
<td>$ 0.39</td>
</tr>
</tbody>
</table>
4. NCDOT Models

[Graph showing the relationship between average LTD Total Rate ($/mile) and Machine Age (miles).]
4. NCDOT Models

Comparison of Results

<table>
<thead>
<tr>
<th>Equipment Class</th>
<th>Annual Cost Models</th>
<th>Cumulative Cost Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Econ. Life</td>
<td>Total Rate</td>
</tr>
<tr>
<td>0201 Pickups</td>
<td>186,379 mi</td>
<td>$0.42</td>
</tr>
<tr>
<td>0205 35k GVW Dumps</td>
<td>113,525 mi</td>
<td>$1.60</td>
</tr>
<tr>
<td>0314 Backhoes</td>
<td>5,197 hrs</td>
<td>$34.33</td>
</tr>
<tr>
<td>0900 Motor graders</td>
<td>6,568 hrs</td>
<td>$52.20</td>
</tr>
</tbody>
</table>
Estimating Equipment Costs

1. Equipment Costs
2. Annual Cost Model
3. Cumulative Cost Model
4. NCDOT Models

The take home…
1. Equipment Costs

Owning Costs
Rate ($/hr) decreases with age as hours are accumulated over which to spread the loss in value

Operating Costs
Rate ($/hr) increases with age due to increasing frequency & magnitude of repairs
2. Annual Cost Model

- Estimated cost and use in each year of life
- Snapshot of the fleet in a year (2011)
4. NCDOT Models

2003 Model Pickups

![Graph showing Cumulative Cost Index vs Machine Age (mi)]

- Low miles ➔ High A values
4. NCDOT Models

Average A value of top quartile machines by age
4. NCDOT Models
Estimating Owning & Operating Costs

John C. Hildreth
John.Hildreth@UNCC.edu
2015 AASHTO SCOM/TRB Maintenance Conference